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Abstract

Several anisotropic models for the three-dimensional spectra of velocity
fluctuations in shear-dominated, atmospheric surface-layer turbulence are
presented and discussed. These models include a generalized Gaussian
model, two forms of generalized von Kármán models; the Kristensen,
Lenschow, Kirkegaard, and Courtney model; and the Mann model. The dis-
tinction between a “top-down” and “bottom-up” approach to the design of
a model is discussed, and how the bottom-up approach generally leads to
more satisfactory models is shown. The effects of turbulent anisotropy on
acoustic propagation are explored by calculating mutual coherence func-
tions (MCFs) (describing the coherence of a propagating acoustic wave) for
the different models. Anisotropy effects have been found that they can be
quite significant, even when the separation between the acoustic sensors is
small.
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1. Introduction

Acoustical arrays can be used to determine the direction of a source. The
principle is simple: through the use of phase differences across the array,
the orientation of the incident wave fronts can be determined. If little re-
fraction exists, the normals to the wave fronts correspond to the direction
of the source. An important limiting factor in this process is the distortion
of the propagating wave fronts caused by atmospheric turbulence. The tur-
bulence introduces random perturbations to the wave fronts, so that they
are no longer perfectly spherical waves radiating outward from the source
(fig. 1). In such situations that the signal-to-noise ratio (SNR) is high, the
turbulence effect is often the dominant factor affecting performance of the
array (Wilson, 1997a).

The turbulence effect can be quantified by calculating the mutual coher-
ence function (MCF), which describes the coherence between signals at a
pair of sensors as a function of their spatial separation. The MCF for prop-
agation through small-scale (inertial subrange) turbulence was determined
long ago and has been applied successfully to optical and other types of
wave propagation (see, for example, Tatarskii (1971)). Treatment of the in-
ertial subrange is reasonably straight forward, primarily because the statis-
tics of the small eddies are locally isotropic (independent of orientation) and
homogeneous (independent of position). In the case of low-frequency acous-
tical propagation, however, large-scale (energy subrange) turbulence plays
an important role. Hence it is necessary to account for such intrinsic fea-
tures of the energy subrange as anisotropy and inhomogeneity. An example

Figure 1. Random distortions in acoustic wave fronts caused by atmospheric turbulence.
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of anisotropy is that the variance for turbulent velocity fluctuations in the
direction of the mean wind is several times larger than the variance for ver-
tical velocity fluctuations. An example of inhomogeneity is the dependence
of the variances on the height above the ground. Similar manifestations of
anisotropy and inhomogeneity are evident in the turbulent length scales.

In a previous report (Wilson, 1997b), I discussed a model for inhomo-
geneities in atmospheric turbulence that are introduced by “blocking” at
the ground. This report is intended as a complement to the previous one. Its
focus is on anisotropic models for atmospheric turbulence and on the impli-
cations for acoustic wave coherence as quantified by the MCF. As in the pre-
vious report, the turbulence models discussed are fully three-dimensional
(3D), second-order statistical models. By this I mean that the models can
be applied to any second-order statistic of the turbulence, with the orien-
tations of the velocity components, as well as the direction of the spatial
displacement between the two observation points, being arbitrary.

Although the turbulence models discussed in this report can be applied, in
principle, to a broad range of atmospheric conditions, the selection of the
model parameters described is for the specific case of a shear-driven, neu-
tral, atmospheric surface layer. Neutral, in the terminology of geophysical
fluid dynamics, means an absence of buoyant instabilities. Hence radiative
heating and cooling of the ground (and the resulting temperature gradients
in the overlying air) are neglected. This leaves wind shear as the dominant
mechanism for generating the turbulence.

One of the points that is demonstrated in this report is that the modeling
procedure becomes very important for anisotropic turbulence. If the proce-
dure is ill-conceived, the result will often be a poor model that does not
agree well with data and/or has parameters that are nearly impossible to
determine. There are basically two possible procedures, which I call the
“top-down approach” and the “bottom-up approach.”∗ These approaches
are illustrated in figure 2. The top-down approach has been used in the past
to derive the popular isotropic von Kármán model. It begins by postulat-
ing an equation for the specific turbulent kinetic energy (TKE) spectrum† (just
energy spectrum for short) of the turbulence, as was done in the previous
report (Wilson, 1997b):

E (k) =
4Γ (17/6)√
πΓ (1/3)

σ2k4`5

(1 + k2`2)17/6
. (1)

∗This usage of “top-down” and “bottom-up” should not be confused with the terminol-
ogy coined for atmospheric boundary layer diffusion by Wyngaard and Brost (1984).
†Specific means per unit mass.
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Figure 2. Two possible procedures for deriving statistical turbulence models.

The energy spectral equation has two unknown parameters, a length scale
` and a variance σ2. (Other symbols and notation used in equation (1) are
discussed in sect. 2 of this report.) When homogeneity and isotropy are
assumed, a well-known set of relationships allows derivation of all other
second-order statistical quantities, such as correlations and spectra, from
the energy spectrum. For example, the one-dimensional (1D) spectrum,
FL (k), which is measured by a stationary sensor when the fluid advects
the turbulence past the sensor, is related to the energy spectrum through
the equation (Batchelor, 1953)

E (k) = k3 d

dk

[
1
k

dFL (k)
dk

]
. (2)

It can be easily verified that

FL (k) =
4Γ (5/6)√
πΓ (1/3)

σ2`

(1 + k2`2)5/6
. (3)

The key to determining the unknown parameters (` and σ2 in this case) is to
derive one or more equations for observable quantities, such as FL (k). The
parameters can then be deduced by fitting the derived equations to obser-
vations. The reason for calling this approach top-down is that the starting
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point for the modeling procedure is the fundamental, underlying function:
the energy spectrum.

The starting point in the second, or bottom-up, approach is the observed
data. An equation for the 1D spectrum is then postulated, and its parame-
ters are chosen according to the data. Then the more fundamental function,
the energy spectrum, is determined in some manner from the 1D spectrum.
This is the approach that has usually been adopted in the past to derive the
popular, isotropic Gaussian model.

In the comparison of the top-down and bottom-up approaches, it is impor-
tant to understand that the energy spectrum cannot be determined from
the 1D spectrum without making some set of assumptions, such as homo-
geneity and isotropy, and then deriving a relationship such as equation (2).
The process of determining the 1D spectrum from the energy spectrum is
generally much more straight forward, involving integrations that are valid
regardless of the turbulence properties.

For homogeneous and isotropic turbulence, the relationship between the
energy spectrum and the 1D spectrum is so simple (eq (2)), it does not re-
ally matter whether one uses a top-down or bottom-up approach; it is easy
to convert back and forth between the energy spectrum and the 1D spec-
trum. When anisotropy is considered, however, this conversion becomes
much more difficult. Therefore some thought must be given to the distinc-
tion between the top-down and bottom-up approaches in the anisotropic
case. We see, in fact, that although the top-down approach is more conve-
nient from a mathematical standpoint, it is very difficult to derive a model
agreeing well with observations when this approach is used. On the other
hand, the bottom-up approach becomes mathematically cumbersome, al-
though Kristensen et al (1989) have devised a systematic process for the
derivation. The main reason for adopting the bottom-up approach is that it
allows for creation of a model having good agreement with observations.

I consider six anisotropic models in this report. The reader may wonder
why it is necessary to consider such a multitude. I am not suggesting that
all of the models are, in the end, useful ones. Rather I introduce the large
number of models in this report to document how anisotropic models can
be developed from various starting points, and to compare their relative
merits and fidelity to atmospheric measurements. By the time we finish,
it should be clearer which models are actually worth retaining for future
studies.

The first model I consider, a set of empirical equations owing to Kaimal et
al (1972) (sect. 3), is actually valid only for 1D spectra, with the direction of
the displacement along the axis of the mean wind. In this report, our main
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use for Kaimal et al’s spectral equations is as a reference point for choosing
parameters needed by the other, complete models derived in sections 4 to
7. For better or worse, the Kaimal et al equations are used as the “ground
truth.”

The second model I consider (sect. 4), which is original with this report,
is essentially the top-down generalization of the popular anisotropic von
Kármán model. The third model (sect. 5), also original with this report,
is a bottom-up generalization of the anisotropic von Kármán model. The
fourth model I consider (sect. 6) is due to Kristensen et al (1989). The Kris-
tensen et al model is actually quite similar to the bottom-up anisotropic von
Kármán one, although it is somewhat more complicated and flexible. The
fifth model I consider is an anisotropic, bottom-up, generalization of the
popular Gaussian model (sect. 7). The last model, the Mann (1994) model
(sect. 8), is entirely different from the previous ones: it is a first-principle
treatment for sheared turbulence. The Mann model is rather complex, but it
contains certain realistic features of sheared turbulence that the other mod-
els do not capture. In section 9 of this report, example calculations of MCFs
and source direction-finding performance for acoustical arrays are made
using the various anisotropic turbulence models.
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2. Preliminaries

This section reviews many of the basic correlation and spectral relation-
ships involved in modeling of turbulence statistics and defines the nota-
tions used in subsequent sections of the report. It is assumed that the reader
has a basic understanding of statistics and Fourier transformation.

The correlation function tensor is defined as

Rij (x,x + r) = 〈ui (x)uj (x + r)〉 , (4)

where the angle brackets indicate ensemble averaging, and ui and uj are
velocity fluctuations in the ith and jth directions. In this report, I follow
the usual convention for orientation of the coordinates in micrometeorol-
ogy: the x1-axis is aligned with the direction of the mean wind (assumed
horizontal), the x2-axis is the horizontal axis perpendicular to the mean
wind, and the x3-axis is vertical.

In homogeneous turbulence (an assumption made throughout this report),
the correlations depend only on the separation between the observation
points:

Rij (r) = Rij (x,x + r) . (5)

The correlation function tensor forms a Fourier-transform pair with the 3D
spectral density tensor Φij (k):

Rij (r) =
∫

Φij (k) exp (ik · r) d3k, (6)

Φij (k) =
1

(2π)3

∫
Rij (r) exp (−ik · r) d3r. (7)

(The notation
∫
d3k in eq (6) means that the integration is to be carried out

over the entire 3D k-space, and likewise r-space for eq (7).)

The covariance tensor is defined as

σ2
ij = 〈ui (x)uj (x)〉 = Rij (0) . (8)

By evaluating equation (6) for r = 0, we see that the covariance can also be
found from the 3D spectral density by integrating over the wave number
domain:

σ2
ij =

∫
Φij (k) d3k. (9)
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Normally in experiments the 1D spectral density tensor Θij (k) is measured.
This quantity is defined as

Θij,n (k) =
1

2π

∫ ∞
−∞

Rij (rên) exp (−ikr) dr, (10)

where ên is the unit vector along the xn-axis. In the case of atmospheric
turbulence, the measurement usually is performed from a stationary tower,
and Taylor’s hypothesis is invoked to convert the time series to a spatial
one (Panofsky and Dutton, 1984). In this case, ên points in the direction of
the mean wind.

Alternatively, we can determine the 1D spectral density from the 3D spec-
tral density. Suppose we apply a 1D Fourier transform to equation (6) with
respect to the xn-axis and then evaluate the result with r = rên. We find

1
2π

∫ ∞
−∞

Rij (rên) exp (−iknr) dr =
∫

Φij (k) d2k⊥, (11)

where k = knên + k⊥, k⊥ ≡ k⊥,1ê⊥,1 + k⊥,2ê⊥,2, and the subscripts “⊥,m”
indicate the directions perpendicular to the xn-axis. The left side of this
equation is the same as the right side of equation (10), and so we have the
result

Θij,n (k) =
∫

Φij (kên + k⊥) d2k⊥. (12)

For brevity, I often use FL (k), FT (k), and FV (k) in this report, instead of
Θ11,1 (k), Θ22,1 (k), and Θ33,1 (k). This set of 1D autospectra, having the
wave number vector aligned with the direction of the mean wind, is the
one observable using a stationary sensor.

An important quantity in wave propagation is the two-dimensional (2D) cor-
relation function bij,n (r⊥):

bij,n (r⊥) =
1

2π

∫ ∞
−∞

Rij (rnên + r⊥) drn, (13)

where r⊥ ≡ r⊥,1ê⊥,1 + r⊥,2ê⊥,2. In wave propagation problems, the xn-
axis is the direction of propagation, and usually only the wind components
parallel to the direction of propagation are relevant. Hence i = j = n is the
main interest. A relationship between the 2D correlation and 3D spectral
density can also be derived, by taking the 1D Fourier transform of equa-
tion (6) with respect to the xn-axis, and then evaluating the result with
kn = 0. We find

bij,n (r⊥) =
∫

Φij (k⊥) exp (ik⊥ · r⊥) d2k⊥. (14)
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In the context of wave propagation, it is also useful to define a 2D structure
function dij,n (r⊥) as

dij,n (r⊥) = 2 [bij,n (0)− bij,n (r⊥)] . (15)

The 2D structure function is the 2D counterpart of the usual (3D) structure
function encountered in turbulence theory.

We define the integral length scale as

Lij,n =
1
σ2
ij

∫ ∞
0

Rij (rên) dr. (16)

Various useful relationships between the integral length scale, the spectral
densities, and the 2D correlation function can be derived from the Fourier
transform relations. First note that when i = j, the correlation function is
an even function and equation (16) can be rewritten

Lii,n =
1

2σ2
ii

∫ ∞
−∞

Rii (rên) dr.

By taking the 1D Fourier transform of equation (6) with respect to the xn-
axis, and then evaluating the result with kn = 0 and r⊥ = 0, it can be shown
that

Lii,n =
π

σ2
ii

∫
Φii (k⊥) d2k⊥ . (17)

By setting k = 0 in equation (12), we therefore have

Lii,n =
π

σ2
ii

Θii,n (0) . (18)

Furthermore, by setting r⊥ = 0 in equation (14), we have

Lii,n =
π

σ2
ii

bii,n (0) . (19)
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3. Kaimal et al Model

Kaimal et al (1972) developed a simple set of empirical formulas for the
1D velocity spectra. Their equations are actually for the frequency, rather
than the wave number, spectra, such as discussed in section 2. With the as-
sumption of Taylor’s hypothesis though (which states that the turbulence
is “frozen” as it moves past the sensor at the mean wind speed U ), their fre-
quency n is simply equal to Uk/2π. As a result Kaimal et al’s equations 21a
to 21b for the spectra of the horizontal velocity components become, in the
notation of this report,

FL (k) = Θ11,1 (k) =
b1zu

2
∗

4π (1 + c1 |k| z/2π)5/3
, (20)

FT (k) = Θ22,1 (k) =
b2zu

2
∗

4π (1 + c2 |k| z/2π)5/3
, (21)

where b1 = 105, c1 = 33, b2 = 17, and c2 = 9.5. The equation for the vertical
velocity spectrum is

FV (k) = Θ33,1 (k) =
b3zu

2
∗

4π
[
1 + c3 (|k| z/2π)5/3

] , (22)

where b3 = 2 and c3 = 5.3. Kaimal et al’s equations are plotted in figures 3
to 5.

Kaimal et al’s equations, since they describe only the 1D spectra, do not
constitute a complete 3D model for anisotropic turbulence. However, in
the remainder of this report, they are used frequently as a reference point.
They are compared to the various complete models that are developed fur-
ther on, and the parameters in the complete models (such as variances and
length scales) are chosen to produce a good agreement with Kaimal et al’s
equations.

The variances corresponding to the Kaimal et al spectra can be found by
integrating the spectra from k = −∞ to∞ (eq (1)). The result for the hori-
zontal velocity components is

σ2
ii =

3biu2
∗

2ci
.
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Figure 4. One-dimensional turbulence spectra for horizontal, cross-stream (lateral) velocity
fluctuations.
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For the vertical velocity,

σ2
33 =

3πb3u2
∗

5 sin (2π/5) c3/5
3

The computed values for the variances are shown in table 1.

The integral length scales can be determined easily using equation (18). We
find

Lii,1 =
bizu

2
∗

4σ2
ii

.

The resulting values for the integral length scales are also shown in table 1.

Kaimal et al
Kármán, isotropic
Kármán, top-down
Kármán, bottom-up
Kristensen et al
Gaussian
Mann

10–3

10–2

10–2 102

10–1

10–1 101

100

100 103

V
er

tic
al

 s
pe

ct
ru

m
, k
 F
V
/u

*2

Normalized wave number, kz

Figure 5. One-dimensional turbulence spectra for vertical velocity fluctuations.

Table 1. Values for variances σ2
ii and streamwise integral length scales Lii,1 corresponding

to Kaimal model.

i σ2
ii Lii,1

1 4.77u2
∗ 5.50z

2 2.68u2
∗ 1.59z

3 1.46u2
∗ 0.343z
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4. Von Kármán-Based Anisotropic Model, Top-Down Approach

In this section, I attempt to develop a model for anisotropic turbulence us-
ing a top-down approach. The model equations are based upon those used
for the popular isotropic von Kármán model.

4.1 Anisotropic Spectral Density Tensor

Kristensen et al (1989) have proposed the following equation for the 3D
spectra in anisotropic turbulence:

Φij (k) =
3∑

m=1

Am (k)
(
δmi −

kmki
k2

)(
δmj −

kmkj
k2

)
. (23)

Their equation satisfies the incompressibility condition for the turbulence.
Note that when A1 (k) = A2 (k) = A3 (k) ≡ A (k), the equation reduces to
the familiar equation for isotropic turbulence (e.g., Batchelor, 1953)

Φij (k) =
E (k)
4πk2

(
δij −

kikj
k2

)
, (24)

where

A (k) =
E (k)
4πk2

, (25)

and E (k) is the energy spectrum for turbulent kinetic energy (TKE).

An important point regarding equation (23) is that it is only an idealized
form for the 3D spectra in anisotropic, homogeneous turbulence. In devis-
ing it, Kristensen et al neglected many of the assymetries that are possi-
ble in anisotropic turbulence. For example, equation (23) has the symmetry
property Φ13 (k1, k2, k3) = −Φ13 (k1, k2,−k3). Hence when Φ13 is integrated
from k3 = −∞ to∞, the result is zero. This implies that the 1D spectrum
Θ13,1 (k) is zero for all k (see eq (12)) and therefore also that the covari-
ance 〈u1u3〉 is zero. But negative 〈u1u3〉 is a fundamental characteristic of a
shear layer, since there is a transfer of streamwise momentum toward the
surface. Despite such inherent shortcomings, equation (23) is used to de-
velop most of the anisotropic turbulence models in the remainder of this
report. It is just a first step toward creating turbulence models with realistic

12



anisotropy; we will see that even this simple first step causes very signifi-
cant additional complications. In section 8, I consider an altogether differ-
ent model, the Mann model, that does break away from the constraints of
equation (23), predicting a negative value for 〈u1u3〉.
The basic idea of the top-down approach is that we build our turbu-
lence model from equations for the energy spectra. When the turbulence
is isotropic, a flexible and useful form for the energy spectrum is

E (k) =
3

B [(µ+ 1) /2, ν]
σ2` (k`)µ

(1 + k2`2)(µ+1)/2+ν
, (26)

where

B (x, y) =
Γ (x) Γ (y)
Γ (x+ y)

(27)

is called the beta function, and Γ (·) is the gamma function. The reader can
verify, using equation (A-1), that integration of this energy spectrum from
k = 0 to k = ∞ yields 3σ2/2 for all values of µ and ν. Hence σ2 is the
variance of a single velocity component. The parameter µ controls the slope
of the spectrum in the energy subrange, k`À 1, where E (k) ∝ kµ. For the
inertial subrange, k`À 1, E (k) ∝ k−1−2ν .

What is classically called the von Kármán model corresponds to µ = 4, and
ν = 1/3. This value for ν produces an inertial-subrange spectrum propor-
tional to k−5/3, in agreement with Kolmogorov’s scaling arguments for this
part of the spectrum (Kolmogorov, 1941). The classical von Kármán energy
spectrum was given earlier as equation (1).

In this paper, I assume that the Ai (k) each have µ = 6 and ν = 1/3. The
reason for choosing µ = 6 is simply that this value allowed quantities such
as the 1D spectral densities to be derived in analytical form, whereas µ = 4
did not. (Actually, any value µ = 2n, where n ≥ 3, will work.) Given these
assumptions, our equation for Ai (k) is

Ai (k) =
3

4πB (7/2, 1/3)
aik

4`7i(
1 + k2`2i

)23/6
. (28)

In this report, I call this turbulence model, based entirely on equations (23)
and (28), the top-down anisotropic von Kármán model.

Note that six parameters are in this version of the anisotropic von Kármán
model. However, since the inertial subrange must be isotropic, we require
for k`i À 1 that

A1 (k) = A2 (k) = A3 (k) .

13



As a result we must have

a1`
−2/3
1 = a2`

−2/3
2 = a3`

−2/3
3 . (29)

Let us define
σ2 =

a1 + a2 + a3

3
, (30)

and

`2/3 =
`
2/3
1 + `

2/3
2 + `

2/3
3

3
. (31)

It can then be shown that

σ2`−2/3 = ai`
−2/3
i , i = 1, 2, 3. (32)

This relationship will be useful later in this section.

The anisotropic energy spectra for the top-down von Kármán model are
plotted in figures 6 to 8. The parameters used for these curves were chosen
by methods to be discussed in section 4.5. As one would expect, the Ai’s
for the top-down von Kármán model have a smooth, single peak, reminis-
cent of the isotropic von Kármán energy spectrum. In comparison to the
isotropic von Kármán model∗ (also shown in the figures), the anisotropic
version of A1 peaks at a higher wave number, whereas A3 peaks at a lower
wave number. The peaks for A2 roughly coincide.
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Figure 6. Anisotropic energy spectra for longitudinal velocity component.

∗Equations for the isotropic von Kármán model appear in Wilson (1997a).
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Figure 7. Anisotropic energy spectra for lateral velocity component.
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Figure 8. Anisotropic energy spectra for vertical velocity component.
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4.2 Variances

With the use of equation (23), the spectrum Φ11 (k) is given by

Φ11 (k) = A1 (k)

(
1− k2

1

k2

)2

+A2 (k)
(
−k1k2

k2

)2

+A3 (k)
(
−k1k3

k2

)2

. (33)

To find the variance, we need to calculate the integral

σ2
11 =

∫
Φ11 (k) dk.

In spherical coordinates (k1 = k cos θ sinφ, k2 = k sin θ sinφ, k3 = k cosφ),
the integral becomes

σ2
11 =

∫ ∞
0

∫ π

0

∫ 2π

0

[
A1 (k)

(
1− cos2 θ sin2 φ

)2
+A2 (k)

(
cos θ sin θ sin2 φ

)2

+ A3 (k) (cos θ sinφ cosφ)2
]
k2 sinφdθ dφ dk.

Performing the integrations over θ and φ yields

σ2
11 =

4π
15

∫ ∞
0

[8A1 (k) +A2 (k) +A3 (k)] k2 dk.

Substituting with equation (28) and evaluating the resulting integrals using
equation (A-1), we find

σ2
11 =

1
10

(8a1 + a2 + a3) . (34)

Similarly, it can be shown that

σ2
22 =

1
10

(a1 + 8a2 + a3) , (35)

σ2
33 =

1
10

(a1 + a2 + 8a3) . (36)

4.3 1D Spectral Densities

First let us consider the case in which i = j = n in equation (12). Setting
k2 = k⊥ cos θ and k3 = k⊥ sin θ in equation (33), we find

Φ11 (k) = A1 (k)
k4
⊥
k4

+A2 (k)
k2

1k
2
⊥ cos2 θ

k4
+A3 (k)

k2
1k

2
⊥ sin2 θ

k4
. (37)

After converting equation (12) to cylindrical coordinates and performing
the integration over θ, we have

Θ11,1 (k1) = 2π
∫ ∞

0

[
k2
⊥A1 (k) +

1
2
k2

1A2 (k) +
1
2
k2

1A3 (k)
]
k3
⊥
k4

dk⊥. (38)

16



When Ai (k) is given by equation (28), the terms in equation (38) can be
easily integrated using equation (A-2). The result is

FL (k) =
1

B (1/2, 1/3)

[
4a1`1

5
(
1 + k2`21

)5/6 +
a2k

2`32

6
(
1 + k2`22

)11/6
+

a3k
2`33

6
(
1 + k2`23

)11/6

]
. (39)

Next let us find an expression for Θ22,1 (k). First note, from equation (23),
that Φ22 (k) can be written

Φ22 (k) = A1 (k)
k2

1k
2
⊥ cos2 θ

k4
+A2 (k)

k4
1 + 2k2

1k
2
⊥ sin2 θ + k4

⊥ sin4 θ

k4

+ A3 (k)
k4
⊥
(
cos2 θ − cos4 θ

)
k4

. (40)

Integrating with respect to θ, we find

Θ22,1 (k1) = 2π
∫ ∞

0

[
1
2
k2

1k
2
⊥A1 (k) +

(
k4

1 + k2
1k

2
⊥ +

3
8
k4
⊥

)
A2 (k) +

1
8
k4
⊥A3 (k)

]
k⊥
k4

dk⊥. (41)

The result of the integration over k⊥ is

FT (k) =
1

B (1/2, 2/3)

[
a1k

2`31

6
(
1 + k2`21

)11/6
+

3a2`2

10
(
1 + k2`22

)5/6
+

a2k
2`32

3
(
1 + k2`22

)11/6
+

11a2k
4`52

18
(
1 + k2`22

)17/6
+

a3`3

10
(
1 + k2`23

)5/6
]
. (42)

Similarly,

FV (k) =
1

B (1/2, 2/3)

[
a1k

2`31

6
(
1 + k2`21

)11/6
+

a2`2

10
(
1 + k2`22

)5/6
+

3a3`3

10
(
1 + k2`23

)5/6 +
a3k

2`33

3
(
1 + k2`23

)11/6
+

11a3k
4`53

18
(
1 + k2`23

)17/6

]
. (43)

In the inertial subrange (k`i À 1), it is widely known that the 1D spec-
tra satisfy isotropy and are proportional to k−5/3. (This was originally sug-
gested by Kolmogorov (1941).) In the inertial subrange, equations (39) and
(42) reduce to

17



Θ11,1 (k) ∼= 1
B (1/2, 1/3)

(
4
5
a1`
−2/3
1 +

1
6
a2`
−2/3
2 +

1
6
a3`
−2/3
3

)
k−5/3

=
17

15B (1/2, 1/3)
σ2`−2/3k−5/3,

and

Θ22,1 (k) ∼= 1
B (1/2, 1/3)

(
1
6
a1`
−2/3
1 +

56
45
a2`
−2/3
2 +

1
10
a3`
−2/3
3

)
k−5/3

=
68

45B (1/2, 1/3)
σ2`−2/3k−5/3.

(Eq (32) was used in deriving the equations above.) Note that both
spectra have the proper k−5/3 dependence. Furthermore, the ratio
Θ11,1 (k) /Θ22,1 (k) equals 4/3, another well-known result for the inertial
subrange (Panofsky and Dutton, 1984).

The 1D spectra for the top-down von Kármán model are compared to
Kaimal et al’s equations in figures 3 to 5. In making these plots, I selected the
parameters in the manner to be discussed in section 4.5. Agreement is fairly
good for the streamwise spectrum FL. The peak in the von Kármán model
is somewhat sharper, and the spectral levels for small kz are lower. Similar
comments apply to the cross-stream spectrum, FT , with the mismatch for
small kz being even more severe. The vertical spectrum FV is rather pe-
culiar. It has two peaks, one at kz ∼ 0.3, and the second at kz ∼ 10. This
behavior is quite unphysical and does not agree well with the Kaimal et al’s
spectra. The behavior is an unfortunate difficulty with the top-down ap-
proach to modeling the anisotropic spectra: it can result in multiple-peaked
1D spectra.

4.4 2D Correlation Functions

From equation (23), we see that

Φ11 (0, k2, k3) = A1 (k⊥) , (44)

where k2
⊥ = k2

2 + k2
3 . Hence equation (14) reduces to

b11,1 (r⊥) =
∫
A1 (k⊥) exp (ik⊥ · r⊥) d2k⊥. (45)

Rewriting the integral in cylindrical coordinates and performing the inte-
gration over angle, we have

b11,1 (r⊥) = 2π
∫ ∞

0
A1 (k⊥)J0 (k⊥r⊥) k⊥ dk⊥, (46)
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where Jν (·) is the Bessel function of the first kind.

Now, substituting equation (28) into equation (46), we have

b11,1 (r⊥) =
3a1

2B (7/2, 1/3)

∫ ∞
0

k5
⊥`

7
1(

1 + k2
⊥`

2
1

)23/6
J0 (k⊥r⊥) dk⊥. (47)

To perform the integrations, we can use the recurrence formula for Bessel
functions

Jn+1 (x) =
2n
x
Jn (x)− Jn−1 (x) .

Hence

k5
⊥J0 (k⊥r⊥) =

8k3
⊥

r2
⊥
J2 (k⊥r⊥)− 8k4

⊥
r⊥

J3 (k⊥r⊥) + k5
⊥J4 (k⊥r⊥) .

Now the integration over k⊥ can be accomplished using equation (A-3).
The result is

b11,1 (r⊥) =
4a1`1

5
√
πΓ (1/3)

(
r⊥
2`1

)17/6
[

8`21
r2
⊥
K5/6

(
r⊥
`1

)
− 8`1
r⊥

K1/6

(
r⊥
`1

)
+K7/6

(
r⊥
`1

)]
, (48)

where Kν (·) is the modified Bessel function of the second kind. The for-
mula for b22,2 (r⊥) is the same, except with a2 replacing a1, and `2 replacing
`1.

To find the approximate form of the 2D correlation for small separations
(r⊥/`¿ 1), we use the following series expansion for the Bessel functions:

Kν(ξ) ' Γ(ν)
2

(
ξ

2

)−ν
− Γ(1− ν)

2ν

(
ξ

2

)ν
+

Γ(ν)
2(1− ν)

(
ξ

2

)2−ν
. (49)

The result of substituting this series into equation (48) is

b11,1 (r⊥) ' 4Γ (5/6) a1`1
5
√
πΓ (1/3)

[
1− 187Γ (1/6)

60Γ (5/6)

(
r⊥
2`1

)5/3

+ 18
(
r⊥
2`1

)2
]
. (50)

Hence the 2D structure function, equation (15), is

d11,1 (r⊥) ' 11Γ (1/6)
30
√
πΓ (2/3)

C2
ur

5/3
⊥ − 36Γ (5/6) a1`1

5
√
πΓ (1/3)

(
r⊥
`1

)2

, (51)

where

C2
u =

34σ2Γ (2/3)
5Γ (1/3)

(2`)−2/3 (52)

is the structure-function parameter. The first term in equation (51) is the one
for isotropic, inertial-subrange turbulence. It is the most important term for
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very small r⊥. But as r⊥ approaches ` and `1, the other terms quickly be-
come important. Hence inertial-subrange approximations for the 2D struc-
ture function generally are unsatisfactory.

Note that the 2D structure functions for the top-down anisotropic von
Kármán model are independent of the direction of the displacement. This
is, in fact, a consequence of using the simplified form of anisotropy im-
plied by equation (23). It is not a general feature of anisotropic turbulence.
On the other hand, the model predictions do depend on the orientation of
the velocity fluctuations. For example, d11,1 (r⊥) 6= d22,2 (r⊥).

The 2D structure function for the along-wind direction (d11,1 (r⊥)) for the
top-down anisotropic von Kármán model is plotted in figure 9. The corre-
sponding structure function for crosswind direction (d22,2 (r⊥)) is plotted
in figure 10. These predictions were made using the parameter selections
discussed in section 4.5. The model predicts that the 2D structure function
is larger in along-wind direction than in the crosswind direction. This is to
be expected, since the variance of the along-wind velocity fluctuations is
higher than for the crosswind fluctuations.

4.5 Parameter Selection

In this section, I determine the parameters by forcing the anisotropic von
Kármán model to have the same variances and TKE dissipation rates as the
empirical equations developed by Kaimal et al (1972). First let us consider
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Figure 9. Predictions of 2D structure function for along-wind direction, for Kologorov
model, various von Kármán models, and Kristensen et al model.
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Figure 10. Predictions of 2D structure function for crosswind direction, for Kolmogorov
model, various von Kármán models, and Kristensen et al model.

the variances. By comparing equations (34) to (36) to table 1, we have the
following matrix equation:

0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8



a1

a2

a3

 =


4.77

2.68

1.46

u2
∗.

Solving this system yields the values for the ai’s shown in table 2.

The parameters `i can be determined by matching the TKE dissipation rate
in the inertial subrange. For k`1 À 1, equation (39) becomes

Θ11,1 (k) ∼= 17
15B (1/2, 1/3)

a1`
−2/3
1 k−5/3.

But Kaimal et al (1972) have demonstrated the following equation

Θ11,1 (k) ∼= α1

2
ε2/3k−5/3, (53)

where ε is the TKE dissipation rate, and α1 is a constant approximately
equal to 0.56 (Kaimal et al, 1972, Kristensen et al, 1989). Therefore

17
15B (1/2, 1/3)

σ2`−2/3 =
α1

2
ε2/3. (54)
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Table 2. Values for top-down von Kármán model parameters ai and `i.

i ai `i

1 5.54u2
∗ 4.92z

2 2.56u2
∗ 1.54z

3 0.813u2
∗ 0.277z

It can be shown that the TKE dissipation rate in a neutral shear layer is

ε =
u3
∗
κz
, (55)

where u∗ is called the friction velocity, z is the height from the ground, and
κ ' 0.4 is called von Kármán’s constant (Stull, 1988). Solving equation (54)
for `, we have

`1 =
[

34a1

15α1B (1/2, 1/3)

]3/2 κz

u3∗
' 0.378

a
3/2
1 z

u3∗
' 4.92z. (56)

The parameters `2 and `3 now follow easily from equation (29). The result-
ing values for the `i are shown in table 2.
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5. Von Kármán-Based Anisotropic Model, Bottom-Up Approach

Since our initial attempt to derive a simple anisotropic von Kármán model
was not very successful in producing 1D spectra that agree well with data
(sect. 4), we try in this section a second approach similar to the one devised
by Kristensen et al (1989). The idea is to use the same set of equations for the
1D spectra as in the isotropic von Kármán model (although with different
parameters), so that the isotropic and anisotropic versions match when the
variances and length scales are all equal.

5.1 1D Spectral Densities

Let us assume the 1D longitudinal spectrum has the form

FL (k) = Θ11,1 (k) =
1

B (1/2, 1/3)
σ2

11`1(
1 + k2`21

)5/6 . (57)

In isotropic turbulence,

FT (k) = FV (k) =
1
2
[
FL (k)− kF ′L (k)

]
. (58)

Since

FL (k)− kF ′L (k) =
1

B (1/2, 1/3)
σ2

11`1(
1 + k2`21

)5/6
(

1 +
5
3

k2`21
1 + k2`21

)
,

natural choices for FT (k) and FV (k) are

FT (k) = Θ22,1 (k) =
1

2B (1/2, 1/3)
σ2

22`2(
1 + k2`22

)5/6
(

1 +
5
3

k2`22
1 + k2`22

)
, (59)

and

FV (k) = Θ33,1 (k) =
1

2B (1/2, 1/3)
σ2

33`3(
1 + k2`23

)5/6
(

1 +
5
3

k2`23
1 + k2`23

)
. (60)

When the variances and length scales are all equal, equation (57) reduces
to equation (18) in Wilson (1997b), which gives the longitudinal, 1D spec-
trum for the isotropic von Kármán model. Equations (59) and (60) reduce to
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equation (27) in the Wilson report, which gives the transverse, 1D spectrum
in the isotropic von Kármán model. If we define

F0 (σ, `, a, ν; k) =
σ2`

B (1/2, ν)
1

(1 + k2`2)ν+1/2

(
1 +

ak2`2

1 + k2`2

)
, (61)

we can conveniently state equations (57) to (60) as

FL (k) = F0 (σ11, `1, 0, 1/3; k) , (62)

FT (k) =
1
2
F0 (σ22, `2, 5/3, 1/3; k) , (63)

and
FV (k) =

1
2
F0 (σ33, `3, 5/3, 1/3; k) . (64)

The 1D spectra for the bottom-up von Kármán model are plotted in figures
3 to 5. Agreement with the Kaimal et al equations is fair. The main difference
for all three cases is that the von Kármán model curves are more sharply
peaked than the Kaimal et al equations and have less energy at small kz.

5.2 Anisotropic Energy Spectra

To derive the anisotropic energy spectra, we follow the method developed
by Kristensen et al (1989). Their equations (49) to (50) for the Ai (k) can be
written in the following form:

A1 (k) =
k

4π
d

dk

1
k

dFL (k)
dk

+
1

2π

[
−β

(
k−2

)
− ζ

(
k−2

)]
, (65)

A2 (k) =
k

4π
d

dk

1
k

dFL (k)
dk

+
1

2π

[
α
(
k−2

)
− 3β

(
k−2

)
− ζ

(
k−2

)]
, (66)

and

A3 (k) =
k

4π
d

dk

1
k

dFL (k)
dk

+
1

2π

[
−α

(
k−2

)
− 3β

(
k−2

)
− ζ

(
k−2

)]
. (67)

The first term in equations (65) to (67) represents the isotropic contribution.
By differentiation of equation (62), this term is found to be

k

4π
d

dk

1
k

dFL (k)
dk

=
55σ2

11

36πB (1/2, 1/3)
k2`51(

1 + k2`21
)17/6

. (68)

Derivation of the terms in equations (65) to (67) that involve the functions
α (s), β (s), and ζ (s) begins by defining the “residual” functions

H (k) = FT (k)− FV (k) , (69)

24



and
J (k) = FL (k)− kF ′L (k)− [FT (k) + FV (k)] . (70)

In isotropic turbulence, the residual functions are zero. It is convenient also
to define

f (s) = H
(
s−1/2

)
s2, (71)

and
g (s) = J

(
s−1/2

)
s2, (72)

where
s ≡ k−2. (73)

From equations (62) to (64), we find

f (s) =
s2

2

[
F0

(
σ22, `2, 5/3, 1/3; s−1/2

)
− F0

(
σ33, `3, 5/3, 1/3; s−1/2

)]
, (74)

and

g (s) =
s2

2

[
2F0

(
σ11, `1, 5/3, 1/3; s−1/2

)
− F0

(
σ22, `2, 5/3, 1/3; s−1/2

)
− F0

(
σ33, `3, 5/3, 1/3; s−1/2

) ]
. (75)

The functions α (s), β (s), and ζ (s) in equations (65) to (67) can be deter-
mined from the integrals (Kristensen et al, 1989)

α (s) =
s+1/

√
2

√
2

∫ s

0
t1−1/

√
2f ′′′ (t) dt− s−1/

√
2

√
2

∫ s

0
t1+1/

√
2f ′′′ (t) dt, (76)

β (s) =
s1/3

3

∫ s

0
t2/3g′′′ (t) dt, and (77)

ζ (s) = −s−1
∫ s

0
t2g′′′ (t) dt. (78)

Hence we need to solve integrals of the form

I (σ, `, q; s) =
qsq

2

∫ s

0
t1−q

d3

dt3

[
t2F0

(
σ, `, 5/3, 1/3; t−1/2

)]
dt, (79)

and we have
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α (s) = I

(
σ22, `2,

1√
2

; s
)
− I

(
σ33, `3,

1√
2

; s
)

+ I

(
σ22, `2,−

1√
2

; s
)

− I
(
σ33, `3,−

1√
2

; s
)
, (80)

β (s) = 2I
(
σ11, `1,

1
3

; s
)
− I

(
σ22, `2,

1
3

; s
)
− I

(
σ33, `3,

1
3

; s
)
, (81)

and

ζ (s) = 2I (σ11, `1,−1; s)− I (σ22, `2,−1; s)− I (σ33, `3,−1; s) . (82)

It can be shown that

d

dt
F0

(
σ, `, a, ν; t−1/2

)
=
ν (ν − a+ 1/2)

ν + 1/2
`2

s2
F0

(
σ, `,

a (ν + 3/2)
ν − a+ 1/2

, ν + 1; t−1/2
)
,

from which follows

d3

dt3

[
t2F0

(
σ, `, a, ν; t−1/2

)]
= c3

`6

s4
F0

(
σ, `, a3, ν3; t−1/2

)
,

where

cn+1 =
νn (νn − an + 1/2)

νn + 1/2
cn, an+1 =

an (νn + 3/2)
νn − an + 1/2

, νn+1 = νn + 1,

and
c0 = 1, a0 = a =

5
3
, ν0 = ν =

1
3
.

(The ci’s defined in this section are different from those in sect. 3 .) It can be
shown that

c3 = −140
27

, a3 = −23
15
, ν3 =

10
3
.

Hence

d3

dt3

[
t2F0

(
σ, `, 5/3, 1/3; t−1/2

)]
= −140

27
`6

s4
F0

(
σ, `,−23

15
,
10
3

; t−1/2
)

= −4675
216

σ2

`B (1/2, 1/3)

(
t/`2

)−1/6

(1 + t/`2)23/6

(
1− 23

15
1

1 + t/`2

)
.
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With the help of equation (A-7), we now find

I (σ, `, q; s) =
4675
432

qσ2`3

B (1/2, 1/3)

(
s

`2

)q [23
15
Bs/`2/(1+s/`2)

(
11
6
− q, 3 + q

)
− Bs/`2/(1+s/`2)

(
11
6
− q, 2 + q

)]
, (83)

where
Bz (a, b) =

∫ z

0
sa−1 (1− s)b−1 ds (84)

is the incomplete beta function. Substitution of this result into equations (80)
to (82) yields the functions α (s), β (s), and ζ (s), and hence the anisotropic
energy spectra.

The anisotropic energy spectra for the bottom-up von Kármán model are
shown in figures 6 to 8. One notable feature of the A3-curve is that it is ini-
tially negative and then becomes positive for kz > 2. This behavior is some-
what alarming, since an energy spectrum must strictly be non-negative.
The behavior could result from vertical inhomogeneities characteristic of a
shear layer, which are neglected in the present model.

5.3 2D Correlation Functions

The 2D correlation function b11,1 (r⊥) can be found by substituting equation
(65) into equation (46). The isotropic contribution, given by equation (68),
is therefore∫ ∞

0

[
k2

2
d

dk

1
k

dFL (k)
dk

]
J0 (kr) dk =

55σ2
11

18B (1/2, 1/3)

∫ ∞
0

[
k3`51(

1 + k2`21
)17/6

]
J0 (kr) dk. (85)

The recurrence relation for Bessel functions allows us to write J0 (kr) =
(2/kr)J1 (kr) − J2 (kr). This leaves two integrals, each of which can be
solved using equation (6.565.4) in Gradshteyn and Ryzhik (1994). The re-
sult is

∫ ∞
0

[
k2

2
d

dk

1
k

dFL (k)
dk

]
J0 (kr) dk =

2σ2
11`1√

πΓ (1/3)

(
r

2`1

)5/6 [
K5/6

(
r

`1

)
− r

2`1
K1/6

(
r

`1

)]
. (86)

Calculation of the anisotropic contribution to b11,1 (r) is rather difficult. We
need to solve integrals of the form

I (σ, `, q; r) =
∫ ∞

0
I
(
σ, `, q; k−2

)
J0 (kr) k dk, (87)
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in which I
(
σ, `, q; k−2

)
contains incomplete beta functions (eq (83)). One

possible approach, based on rewriting the incomplete beta function as a
Meijer’s G-function, is discussed in the appendix. Using equation (A-12),
we find

I (σ, `, q; r) =
qσ2`

2
√
πΓ (1/3)

(
r

2`

)11/3
G22

42

4`2

r2

∣∣∣∣∣∣ 17/6, 2, 23/6− q, 17/6

17/6− q, 35/6


− 5

2
G22

42

4`2

r2

∣∣∣∣∣∣ 17/6, 2, 23/6− q, 17/6

17/6− q, 29/6

 . (88)

For the 2D correlation function in the along-wind direction, we now have
from equation (65)

b11,1 (r) =
2σ2

11`1√
πΓ (1/3)

(
r

2`1

)5/6 [
K5/6

(
r

`1

)
− r

2`1
K1/6

(
r

`1

)]
− β (r)− ζ (r) , (89)

where, from eq (27),

β (r) = 2I
(
σ11, `1,

1
3

; r
)
− I

(
σ22, `2,

1
3

; r
)
− I

(
σ33, `3,

1
3

; r
)
. (90)

Equations for b22,2 (r), b33,3 (r), α (r), and ζ (r) follow with obvious
replacements.

Since routines for computing Meijer’s G-functions are not widely avail-
able,∗ calculating the 2D correlations using equation (88) is not normally
practical. Rather, they must be calculated by performing the integration
in equation (87) numerically. Generalization of the isotropic von Kármán
model to the anisotropic case, using a bottom-up approach, therefore pre-
vents us from obtaining important results such as the 2D correlations in a
convenient analytical form—a rather disappointing outcome.

Computations of the 2D structure functions, found by numerical integra-
tion, are shown in figures 9 to 10. The results are observed to differ signifi-
cantly from the top-down approach.

5.4 Parameter Selection

As was the case for the top-down approach, I choose the variances for the
bottom-up anisotropic von Kármán model to match Kaimal et al’s results,
shown in table 1. The length scale parameters are chosen to produce the

∗H. Auvermann has shown that the commercial software package Mathematica contains
a routine to compute Meijer’s G-functions.

28



correct inertial-subrange asymptote, just as in section 4.5. From equations
(53) and (108 ), we have for k`1 À 1,

FL (k) ∼= 1
B (1/2, 1/3)

σ2
11`
−2/3
1 k−5/3 =

α

2
ε2/3k−5/3.

Solving for `1, we find

`1 =

[
2σ2

11

αB (1/2, 1/3)

]3/2
κz

u3∗
' 0.350

σ3
11z

u3∗
' 3.64z. (91)

It follows from equation (58) that

FT (k) = FV (k) =
4
3
FL (k) (92)

in the inertial subrange. Hence for k`2 À 1,

FT (k) ∼= 4
3B (1/2, 1/3)

σ2
11`
−2/3
1 k−5/3 =

2α
3
ε2/3k−5/3,

and

`2 =

[
2σ2

22

αB (1/2, 1/3)

]3/2
κz

u3∗
' 0.350

σ3
22z

u3∗
' 1.53z. (93)

Similarly,

`3 =

[
2σ2

33

αB (1/2, 1/3)

]3/2
κz

u3∗
' 0.350

σ3
33z

u3∗
' 0.617z. (94)
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6. Kristensen et al Model

Krasnenko et al (1997) have previously suggested using the Kristensen et al
(1989) model to calculate statistics of acoustic field fluctuations. This model
is very similar to the bottom-up von Kármán model discussed in the pre-
vious section. In fact, I based the derivation in the previous section largely
on Kristensen et al’s model. The main comparative advantage of the Kris-
tensen et al model is its flexibility. It contains additional parameters that
allow one to tailor the shape of the spectral “peak” to the data set. The
disadvantages are that the equations are somewhat more complicated and
that, in some cases, deriving values for all of the parameters may be diffi-
cult. The equations for the Kristensen et al model are summarized below in
a slightly different form than in the original paper. The changes hopefully
make computations somewhat simpler.

6.1 1D Spectral Densities

Kristensen et al used the following equations for the 1D spectra for wave
numbers corresponding to the direction of the mean wind:

FL (k) = Θ11,1 (k) =
L11,1σ

2
11

π

1{
1 +

[
kL11,1

a(µ1)

]2µ1
}5/6µ1

, (95)

FT (k) = Θ22,1 (k) =
L22,1σ

2
22

2π

1 + 8
3

[
kL22,1

a(µ2)

]2µ2

{
1 +

[
kL22,1

a(µ2)

]2µ2
}5/6µ2+1

, (96)

and

FV (k) = Θ33,1 (k) =
L33,1σ

2
33

2π

1 + 8
3

[
kL33,1

a(µ3)

]2µ3

{
1 +

[
kL33,1

a(µ3)

]2µ3
}5/6µ3+1

, (97)

where
a (µ) =

πµ

B (1/2µ, 1/3µ)
. (98)

The parameters µi control the sharpness of the spectral peak; larger values
give a sharper peak. A value of 1 corresponds to the bottom-up anisotropic
von Kármán model.
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The 1D spectra for the Kristensen et al model are plotted in figures 3 to
5 and compared to Kaimal et al equations, as well as the two versions of
the von Kármán model. (Selection of the parameters for this model will be
discussed in sect. 6.4.) It is seen that the Kristensen et al model has enough
flexibility in its equations to reproduce Kaimal et al’s empirical equations
quite well.

6.2 Anisotropic Energy Spectra

Derivation of the anisotropic energy spectra Ai (k) proceeds much as it did
in section 5, except that the equations become somewhat more complicated
because of the more complicated form for the 1D spectra. The first term in
equations (65) to (67), representing the isotropic spectra, is found by differ-
entiation of equation (96) to be

k

4π
d

dk

1
k

dFL (k)
dk

=
5σ2

11

12π2a2µ1 (µ1)
k2µ1−2L2µ2+1

11,1{
1 +

[
kL11,1

a(µ1)

]2µ1
}5/6µ1+2

{
2− 2µ1 +

11
3

[
kL11,1

a (µ1)

]2µ1
}
. (99)

The remaining terms in equations (65) to (67), involving the functions α (s),
β (s), and ζ (s), represent the anisotropic contributions. Since the reader can
refer to the solution for these functions in Kristensen et al (1989), it will not
be repeated here. The functions are given by the equations

α (s) = γ0

(
1√
2
, σ22, L22,1, µ2; s

)
− γ0

(
1√
2
, σ33, L33,1, µ3; s

)
+ γ0

(
− 1√

2
, σ22, L22,1, µ2; s

)
− γ0

(
− 1√

2
, σ33, L33,1, µ3; s

)
, (100)

β (s) = 2γ0

(
1
3
, σ11, L11,1, µ1; s

)
− γ0

(
1
3
, σ22, L22,1, µ2; s

)
− γ0

(
1
3
, σ33, L33,1, µ3; s

)
, (101)

and

ζ (s) = 2γ0 (−1, σ11, L11,1, µ1; s)− γ0 (−1, σ22, L22,1, µ2; s)− γ0 (−1, σ33, L33,1, µ3; s) . (102)

The function γ0 is in turn given by

γ0 (q, σ, `, µ; s) =
1

96π
qσ2`3

µa2 (µ)
ηq

4∑
n=1

Cn (µ)Bηµ/(1+ηµ)

(
11
6µ
− q

µ
, n+

q − 1
µ

)
, (103)
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where

η ≡ a2 (µ)
`2

s, (104)

and
C1 (µ) = 40 (1− µ) (1− 2µ) (2− µ)

C2 (µ) = 140
3 (1− µ) (1− 2µ) (5 + 6µ)

C3 (µ) = 10
9 (5 + 6µ) (5 + 12µ) (7− 12µ)

C4 (µ) = 10
27 (5 + 6µ) (5 + 12µ) (5 + 18µ)


. (105)

The anisotropic energy spectra for the Kristensen et al model are plotted in
figures 6 to 8 and compared to the models discussed in previous sections.
The curves for the Kristensen et al model are similar to the bottom-up von
Kármán model, although they appear more flattened. As was the case for
the bottom-up von Kármán model, the Kristensen et al model exhibits neg-
ative A3 for small kz. Since the Kristensen et al model fits Kaimal et al’s 1D
spectra so well, the cause of this feature must either be that the 1D spectral
measurements are inaccurate or that the turbulence cannot be adequately
modeled using equation (23).

6.3 2D Correlation Functions

In order to find the 2D correlations, we need to solve the integral equation
(46), with A1 given by equation (65). For the Kristensen et al model, we
must calculate integrals of the form∫ ∞

0
γ0

(
q, σ, L, µ; k−2

)
J0 (kr) k dk.

I have been unable to find a method for calculating these integrals. Appar-
ently one cannot even express the result in terms of Meijer’s G-functions,
as was possible for the bottom-up von Kármán model. Fortunately, finding
the 2D correlations by performing a numerical integration is not difficult.

Predictions from the Kristensen et al model are compared to the von Kármán
family in figures 9 to 10. Comparisons to the anisotropic Gaussian and
Mann models (to be discussed later in this report) are shown in figures 11
to 12. The Kristensen et al model predicts a strong enhancement of the 2D
structure function in the along-wind direction, and a slight enhancement in
the crosswind direction.
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Figure 11. Predictions of 2D structure function for along-wind direction for Kristensen et al,
Gaussian, isotropic von Kármán, Kolmogorov, and Mann models.
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Figure 12. Predictions of 2D structure function for crosswind direction, for Kristensen et al,
Gaussian, isotropic von Kármán, Kolmogorov, and Mann models.
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6.4 Parameter Selection

Kristensen et al chose the variances and integral length scales in their model
to match those found by Kaimal et al, and hence the values for these param-
eters are the same as in table 1. They also determined the parameters µi by
fitting their model to Kaimal et al’s equations. The result is

µ1 = 0.52

µ2 = 0.49

µ3 = 0.68

 . (106)

Note that the µi’s deviate significantly from 1, indicating that the actual
spectra are less peaked than in the von Kármán model.
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7. Gaussian Model

Although it is rather unrealistic, the isotropic Gaussian model has proven
quite popular. The main advantage of the isotropic Gaussian model is that
the equations for the correlation and spectral functions are easily obtain-
able. In this section, we explore how the Gaussian model can be gener-
alized to the anisotropic case using a bottom-up approach. Since conve-
nient closed-form results could not be obtained for quantities such as the
2D correlations in the bottom-up von Kármán model, it is interesting to see
whether such results can be obtained for the Gaussian model.

7.1 1D Spectral Densities

For this model it is assumed that the longitudinal correlation function has
the form

R11 (rê1) = σ2
11 exp

(
−r

2

`21

)
. (107)

By calculating the Fourier transform according to equation (10) we find

FL (k) = Θ11,1 (k) =
σ2

11`1
2
√
π

exp

(
−k

2`21
4

)
. (108)

As mentioned before,FT (k) = FV (k) = (1/2) [FL (k)− kF ′L (k)] in isotropic
turbulence. Since

FL (k)− kF ′L (k) =
σ2

11`1
2
√
π

(
1 +

k2`21
2

)
exp

(
−k

2`21
4

)
, (109)

natural choices for FT (k) and FV (k) are

FT (k) = Θ22,1 (k) =
σ2

22`2
4
√
π

(
1 +

k2`22
2

)
exp

(
−k

2`22
4

)
, and (110)

FV (k) = Θ33,1 (k) =
σ2

33`3
4
√
π

(
1 +

k2`23
2

)
exp

(
−k

2`23
4

)
. (111)

The 1D spectra for the anisotropic Gaussian model are plotted in figures 3
to 5, which also show the models discussed in previous sections of this
report. (Selection of the parameters for the Gaussian model will be de-
scribed in sect. 7.4.) The Gaussian model is observed to agree with Kaimal
et al’s equations for very small kz. However, the spectral peak in the Gaus-
sian model is much too sharp, and the inertial-subrange decay is much too
rapid.
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7.2 Anisotropic Energy Spectra

We will again determine the anisotropic energy spectra using equations
(65) to (67). The isotropic term in those equations is, for the Gaussian model,

k

4π
d

dk

1
k

dFL (k)
dk

=
σ2

11k
2`51

32π3/2
exp

(
−k

2`21
4

)
. (112)

Using the same method as in section 5.2 to calculate α (s), β (s), and ζ (s),
we arrive at the residual functions

f (s) =
s2

2

[
F0

(
σ22, `2; s−1/2

)
− F0

(
σ33, `3; s−1/2

)]
, and

g (s) =
s2

2

[
2F0

(
σ11, `1; s−1/2

)
− F0

(
σ22, `2; s−1/2

)
− F0

(
σ33, `3; s−1/2

)]
,

where

F0 (σ, `; k) =
σ2`

2
√
π

(
1 +

k2`2

2

)
exp

(
−k

2`2

4

)
. (113)

We again need to find integrals of the form given by equation (79), although
with the function F0 given by equation (111), we can show that

d3

dt3

[
t2F0

(
σ, `; t−1/2

)]
=

σ2`

2
√
π

[(
− 5`6

64t4
+

`8

128t5

)
exp

(
−`

2

4t

)]
.

The integrals can now be found using equation (A-9), with result

I (σ, `, q; s) =
qσ2`3

8
√
π

(
4s
`2

)q [
Γ

(
3 + q,

`2

4s

)
− 5

2
Γ

(
2 + q,

`2

4s

)]
. (114)

The functions α (s), β (s), and ζ (s) can now be determined using equations
(80) to (82).

The anisotropic energy spectra for the Gaussian model are plotted in fig-
ures 6 to 8. They have a rather strange and unphysical appearance, exhibit-
ing multiple positive and negative peaks as kz is varied.

7.3 2D Correlation Functions

It is not difficult to calculate the isotropic contribution to the 2D correlation
functions in the Gaussian model. Substituting equation (112) into (46), we
have the following integral for the isotropic contribution:∫ ∞

0

[
k2

2
d

dk

1
k

dFL (k)
dk

]
J0 (kr) dk =

σ2
11`

5
1

16
√
π

∫ ∞
0

exp

(
−k

2`21
4

)
J0 (kr) k3 dk. (115)
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Using the recurrence relation for Bessel functions, we have two integrals,
each of which can be solved using Gradshteyn and Ryzhik’s (1994) equa-
tion (6.63.4). The result is∫ ∞

0

[
k2

2
d

dk

1
k

dFL (k)
dk

]
J0 (kr) dk =

σ2
11`1

2
√
π

(
1− r2

`21

)
exp

(
−r

2

`21

)
. (116)

The calculations for the anisotropic contributions are more complicated, re-
quiring us to integrate incomplete gamma functions. Specifically, we must
calculate integrals of the form

I (σ, `, q; r) =
∫ ∞

0
I
(
σ, `, q; k−2

)
J0 (kr) k dk =

qσ2`3

8
√
π

∫ ∞
0

(
4

k2`2

)q
[
Γ

(
3 + q,

k2`2

4

)
− 5

2
Γ

(
2 + q,

k2`2

4

)]
J0 (kr) k dk. (117)

To solve an integral of this form, I will rewrite the incomplete gamma
functions in terms of confluent hypergeometric functions. From equa-
tions (13.1.33) and (13.6.28) in Abramowitz and Stegun (1965), we have

Γ (a, x) = e−x/2xa/2−1/2Wa/2−1/2,−a/2 (x) , (118)

where Wκ,µ (·) is Whittaker’s function. Hence

I (σ, `, q; s) =
qσ2`3

8
√
π

(
4s
`2

)q/2
exp

(
− `

2

8s

)

×
(− `2

4s

)
W1+q/2,3/2+q/2

(
`2

4s

)
− 5

2

(
− `

2

4s

)1/2

W1/2+q/2,1+q/2

(
`2

4s

) . (119)

The integration can now be performed using Gradshteyn and Ryzhik’s
(1994) equation (7.672.2), with result

I (σ, `, q; r) =
3qσ2`

2
√
π (1− q)

[
2F2

(
4, 1− q; 1, 2− q;−r

2

`2

)

−5
4 2F2

(
3, 1− q; 1, 2− q;−r

2

`2

)]
, (120)

where 2F2 (·) is a generalized hypergeometric function.

Although we have managed to integrate the anisotropic part, the result is
not very helpful from a practical standpoint. Routines are not commonly
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available to calculate generalized hypergeometric functions. Hence the 2D
correlations must be calculated numerically, by integrating equation (46).
This is a rather surprising outcome: even the simple Gaussian model, when
generalized to the anisotropic case, eludes a convenient solution for the 2D
correlation function.

Predictions of the 2D structure function from the anisotropic Gaussian
model (calculated by numerical integration) are compared to the Kris-
tensen et al model in figures 11 to 12. The Gaussian model converges on the
Kristensen et al model for sensor separations much larger than the height,
since the two models are essentially the same at large scales of the energy
subrange. However, at smaller separations, corresponding to the inertial
subrange, the Gaussian model predictions are quite unrealistic. Further-
more, the Gaussian model exhibits unphysical peaks in the 2D structure
function around the transition between the inertial and energy subranges.

7.4 Parameter Selection

Since the Gaussian model does not have a realistic inertial subrange, it is
logical to select its parameters to obtain the best possible fit to spectral char-
acteristics of the energy subrange, such as variances and integral length
scales. Hence I take the approach here of selecting the Gaussian model pa-
rameters to reproduce the variances and integral length scales given in ta-
ble 1. To reproduce the variances, of course, we simply assign the variances
in the Gaussian model to those given in the table. The length scales follow
from equation (18). Evaluating equations (108), (111), and (111) at k = 0, we
find

L11,1 =
√
π

2
`1, L22,1 =

√
π

4
`2, L33,1 =

√
π

4
`3.

The resulting Gaussian model parameters are shown in table 3.

Table 3. Values for variances σ2
ii and length scales `i corresponding to Gaussian model.

i σ2
ii `i

1 4.77u2
∗ 6.21z

2 2.68u2
∗ 3.59z

3 1.46u2
∗ 0.774z
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8. Mann Model

8.1 Rapid Distortion Theory and Eddy Lifetimes

The Mann model is the result of a “first-principle” theoretical treatment for
turbulence in a constant shear layer. By constant shear, it is meant that the
gradient, dU/dz (where U is the mean wind speed), is constant. Constant
dU/dz implies, of course, that U is proportional to z. In an actual shear
layer, U is proportional to the logarithm of z. Except for this shortcoming,
the Mann model is probably quite realistic.

The main hypothesis upon which Mann’s model is based is called rapid dis-
tortion theory. The idea is basically this: In a turbulent shear layer, new ed-
dies are perpetually being created, subjected to the forces of shear, and then
eventually broken down. Between the times when an eddy is “created” and
when it is “destroyed” by the shear, there is a time at which the eddy exists
in a state that is “typical” for eddies having its same spatial dimensions.
Let us call this “typical” time the eddy lifetime. This argument suggests that
we can derive a spectral model by introducing turbulence with some en-
ergy spectrum E (k) at time t = 0 and then subjecting the turbulence to
shear (i.e., rapidly distorting it) for a time interval equal to the eddy life-
time. Then the spectrum should be roughly the same as turbulence in the
actual shear layer.

The initial energy spectrum E (k) in Mann’s model is the von Kármán en-
ergy spectrum, equation (1). The eddy lifetime being given in nondimen-
sional form (depends) on the scale of the eddies by∗

β = Γ (k`)−2/3
{

2F1

[
1
3
,
17
6

;
4
3

;− (k`)−2
]}−1/2

, (121)

in which Γ is a model parameter. Values for Γ in the range of 2.6 to 3.8
appear to be reasonable for atmospheric turbulence (Mann, 1994).

A full discussion of rapid distortion theory and Mann’s model is beyond
the scope of this report. The results of the analysis, as they pertain to acous-
tical propagation modeling, will be summarized in the following sections.

∗The nondimensional eddy lifetime is dimensionalized by multiplication by (dU/dz)−1.
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8.2 3D Spectral Densities

Mann’s equations for the spectra in a uniform (constant gradient) shear
layer are

Φ11 (k) =
E (k0)
4πk4

0

[
k2

0 − k2
1 − 2k1k30ζ1 +

(
k2

1 + k2
2

)
ζ2

1

]
, (122)

Φ22 (k) =
E (k0)
4πk4

0

[
k2

0 − k2
2 − 2k2k30ζ2 +

(
k2

1 + k2
2

)
ζ2

2

]
, (123)

Φ12 (k) =
E (k0)
4πk4

0

[
−k1k2 − k1k30ζ2 − k2k30ζ1 +

(
k2

1 + k2
2

)
ζ1ζ2

]
, (124)

Φ13 (k) =
E (k0)
4πk2

0k
2

[
−k1k30 +

(
k2

1 + k2
2

)
ζ1

]
, (125)

Φ23 (k) =
E (k0)
4πk2

0k
2

[
−k2k30 +

(
k2

1 + k2
2

)
ζ2

]
, and (126)

Φ33 (k) =
E (k0)
4πk4

(
k2

1 + k2
2

)
. (127)

The initial (before the onset of shear distortion) wave number is

k0 = (k1, k2, k30) , (128)

where
k30 = k3 − βk1. (129)

The quantities ζi are given by the equations

ζ1 = C1 −
k2

k1
C2, ζ2 =

k2

k1
C1 + C2, (130)

where

C1 =
βk2

1

(
k2

0 − 2k2
30 + βk1k30

)
k2
(
k2

1 + k2
2

) , (131)

and

C2 =
k2k

2
0(

k2
1 + k2

2

)3/2 arctan

[
βk1

(
k2

1 + k2
2

)1/2
k2

0 − βk30k1

]
. (132)

To facilitate implementation of Mann’s model on a computer, rewriting the
hypergeometric geometric function in equation (121) as an incomplete beta
function is helpful. First, by applying equation (15.3.4) in Abramowitz and
Stegun (1965), we have

2F1

[
1
3
,
17
6

;
4
3

;− (k`)−2
]

=
(k`)2/3

(1 + k2`2)1/3 2F1

(
1
3
,−3

2
;
4
3

;
1

1 + k2`2

)
.
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Then, by applying Abramowitz and Stegun’s equation (6.6.8) to the right-
hand side, we have

2F1

[
1
3
,
17
6

;
4
3

;− (k`)−2
]

=
(k`)2/3

3
B1/(1+k2`2)

(
1
3
,
5
2

)
.

Hence the nondimensional eddy lifetime can be expressed as

β =
√

3Γ
k`

[
B1/(1+k2`2)

(
1
3
,
5
2

)]−1/2

. (133)

The incomplete beta function (with argument in the domain [0, 1]) can be
computed using routines available with software packages such as Matlab.

8.3 Variances and Parameter Selection

The variances and covariances in the Mann model can be found by numer-
ically integrating the 3D spectra Φij (k), in accordance with equation (9).
The results, as a function of Γ, are shown in figure 13. As Γ is increased,
the variance in the streamwise component σ2

11 increases. So too does the
cross-stream variance σ2

22 increase, although at a lesser rate. The vertical
variance σ2

33 decreases slightly. Note also that the model predicts a negative
covariance σ2

13 between the streamwise and vertical fluctuations, which is
an important intrinsic feature of a shear layer. (All of the models discussed
earlier were somewhat unrealistic in that they predict zero σ2

13.)

It is also interesting to look at the integral length scales as a function of Γ.
These are shown in figure 14. (The computation involved performing the
integration in eq (12) numerically and then applying eq (18).) When Γ =
0, we have the usual result for isotropic turbulence that the longitudinal
integral length scales (e.g., L11,1) are twice the transverse scales (e.g., L22,1

and L33,1). All of the integral length scales shown initially increase with
increasing Γ, although for Γ > 1.5, L33,1 starts to decline.

Mann chose the model parameters using a least-squares method formu-
lated to give the best fit with 1D spectra. In this report, I used a somewhat
simpler method that gives similar results. The main idea is to choose Γ to
match the ratio σ2

11/σ
2
33 measured by Kaimal et al. From table 1, this ratio

should be 4.77/1.46 = 3.27. Using the data shown in figure 13, one can
show the value of Γ that produces this ratio to be Γ = Γ0 = 3.53. Since
Mann (1994) found his atmospheric data were best described by values for
Γ in the range of 2.5 to 3.5, the value suggested appears reasonable.
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Figure 13. Variances of three velocity components and covariance between longitudinal and
vertical velocities, according to Mann model. (Co)variances are plotted as a function of Γ, a
parameter controlling eddy lifetime.
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Figure 14. Integral length scales for three velocity components and for joint fluctuations
between longitudinal and vertical velocities, according to Mann model. Length scales are
plotted as a function of Γ, a parameter controlling eddy lifetime.
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To force σ2
11 equal to 4.77u2

∗ when Γ = Γ0, we need to set

σ2
iso = 1.88u2

∗ (134)

in the initial von Kármán spectrum.

In order to reproduce the inertial-subrange asymptote, we must set

` =

[
2Γ(5/6)σ2

iso√
πΓ(1/3)α1

]3/2
1
ε

= 0.805z. (135)

8.4 2D Correlation Functions

The 2D correlation functions for the Mann model can be found using equa-
tion (14). Since Φii (k⊥) depends on the orientation of k⊥, the double in-
tegral cannot be reduced to a single one involving a Bessel function as in
equation (46). However, if we are interested in sensor separations along
just one of the orthogonal coordinate axes, equation (14) can be simplified
somewhat. For example,

b11,1 (r2, 0) =
∫ ∞
−∞

[∫ ∞
−∞

Φ11 (0, k2, k3) dk3

]
exp (ik2r2) dk2, (136)

or

b11,1 (0, r3) =
∫ ∞
−∞

[∫ ∞
−∞

Φ11 (0, k2, k3) dk2

]
exp (ik3r3) dk3. (137)

The advantage of these equations is that the full Fourier transform needs
to be performed along just one axis. A simple numerical integration can
be performed along the other axis. Note that the 2D structure functions in
the Mann model depend on the direction of the displacement. This distin-
guishes the Mann model from the ones considered earlier.

Predictions of the 2D structure function for the Mann model are shown
in figures 11 to 12. Note that the structure functions for both horizontal
and vertical separations are nearly the same for small separations com-
pared to the height (the inertial subrange), diverge for moderate separa-
tions, and then become equal for large separations. The reason why they
become equal for large separations is that b11,1 (r, 0) and b11,1 (0, r) both
approach zero for large r, so that the 2D structure function in the two
cases is d11,1 (r, 0) ' d11,1 (0, r) ' 2b11,1 (0, 0). For large separations, the
enhancement of the along-wind structure function d11,1 predicted by the
Mann model is about half that predicted by the Kristensen et al model. The
predictions differ even more in the crosswind direction: the Mann model
predictions for d22,2 are about 1/10 the Kristensen et al predictions.
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9. Anisotropy and the Coherence of Sound Waves

So far in this report, I have dealt only with the modeling of anisotropic
turbulence, without discussing its significance to wave propagation. The
effect of anisotropic turbulence on the coherence of a propagating sound
wave will be discussed in this section.

9.1 Mutual Coherence Function

The MCF describes the coherence between a pair of sensors as a function
of their separation r, normal to the direction of propagation. It is given by
(Wilson, 1997a)

Γ (r) = exp
[
−π

4
Rk2du (r)

]
, (138)

where R is the propagation distance (range); k = 2πf/c0 the wavenumber,
f the frequency, c0 the sound speed; and du (r) the 2D structure function of
the effective index-of-refraction fluctuations. The function du (r) is related
to its counterpart for the velocity fluctuations according to (Wilson, 1997a)

du (r⊥) =
4
c2

0

dii,i (r⊥) , (139)

where the direction of propagation is the ith axis, and r⊥ is a displacement
perpendicular to the ith axis.

In the shear-layer models considered in this report, all of the variances scale
in proportion to u2

∗, and all of the length scales to z. From equations (13)
and (15), we see that dii,i (r⊥) is proportional to zu2

∗. Hence let us define the
nondimensionalized 2D velocity structure function as

dii,i (r⊥) =
dii,i (r⊥)
zu2∗

. (140)

Substituting equation (139) into (140) and the result into (138), we have

Γ (r) = exp
[
−π

4
Rdii,i (r)

]
, (141)

where

R =
4Rk2zu2

∗
c2

0

. (142)
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Hence, by plotting the MCF as a function of the normalized range R and
normalized separation r/z, we can generate universal sets of curves scal-
able to arbitrary values of the range, sensor separation, frequency, height,
friction velocity, and sound speed.

The dependence of the MCFs on the normalized range, for the Kolmogorov
model, various von Kármán models, and the Kristensen et al model, is plot-
ted in figures 15 to 18. The first two plots show along-wind MCFs for sensor
separations equal to 0.1 and 1 times the height; the second two are the cor-
responding crosswind plots. When r/z = 0.1 , the various models agree
fairly well. The MCF for the Kolmogorov model is only slightly less than
the others. The differences become more pronounced when r/z = 1. At this
separation, the Kolmogorov model predicts much lower coherence than the
others. Also, the isotropic von Kármán model predicts a coherence that is
too high in the along-wind direction.

A similar set of comparisons, this time with the Kolmogorov, Gaussian,
Kristensen et al, and Mann models, is shown in figures 19 to 22. When
r/z = 0.1, the predicted coherence from the Gaussian model is much too
high. This is because the Gaussian model does not have a realistic inertial
subrange. The Gaussian model works well when r/z = 1, though. MCFs
from the Kristensen et al and Mann models agree reasonably well, although
for crosswind propagation when r/z = 1, the Mann model predicts signif-
icantly higher coherence.
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Figure 15. MCF as a function of normalized range, for Kolmogorov, various von Kármán,
and Kristensen et al models. Propagation is along wind. Sensor separation is 0.1 times
height.
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Figure 16. MCF as a function of normalized range, for Kolmogorov, various von Kármán,
and Kristensen et al models. Propagation is along wind. Sensor separation equals height.
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Figure 17. MCF as a function of normalized range, for Kolmogorov, various von Kármán,
and Kristensen et al models. Propagation is crosswind. Sensor separation is 0.1 times height.
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Figure 18. MCF as a function of normalized range, for Kolmogorov, various von Kármán
models, and Kristensen et al models. Propagation is crosswind. Sensor separation equals
height.
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Figure 19. MCF as a function of normalized range, for Kolmogorov, isotropic von Kármán,
Gaussian, Kristensen et al, and Mann models. Propagation is along wind. Sensor separation
is 0.1 times height.
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Figure 20. MCF as a function of normalized range, for Kolmogorov, isotropic von Kármán,
Gaussian, Kristensen et al, and Mann models. Propagation is along wind. Sensor separation
equals the height.
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Figure 21. MCF as a function of normalized range, for Kolmogorov, isotropic von Kármán,
Gaussian, Kristensen et al, and Mann models. Propagation is crosswind. Sensor separation
is 0.1 times height.
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Figure 22. MCF as a function of normalized range, for Kolmogorov, isotropic von Kármán,
Gaussian, Kristensen et al, and Mann models. Propagation is crosswind. Sensor separation
equals height.

9.2 Performance of Acoustic Direction-Finding Arrays

An important application of the theory of mutual coherence is the pre-
diction of source direction-finding accuracy from acoustical arrays. A full
treatment of this problem was provided by Wilson (1997a). The procedure
described in that report involved calculating the Cramer-Rao lower bound
(CRLB) corresponding to a given array configuration, turbulence model,
and noise environment. The CRLB is the standard deviation in the wave-
front angle-of-arrival estimates about their actual value attained using an
ideal estimation method.∗ Or more simply put, when the CRLB is equal to
α degrees, we can usually measure the direction of a source to an accuracy
of α degrees, if equipment and processing methods are good.

Actual CRLB calculations, for many of the models discussed earlier in this
report, are shown in figures 23 to 30. The calculations were performed for a
six-element array, with the sensors evenly spaced around a horizontal cir-
cle having a radius of 1.2 m. It turns out that the CRLB for such an array
configuration is independent of the source direction (Wilson, 1997a). The
∗The CRLB is strictly the variance of the estimates, not their standard deviation (square

root of the variance). Because the standard deviation has linear units and is therefore more
natural to deal with, however, I have adopted the implicit convention of meaning the square
root of the CRLB whenever I refer to the CRLB throughout this report.
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source and array heights were both 1 m, the friction velocity was u∗ = 0.5
m/s (windy conditions), the SNR was 20 dB, and five statistically indepen-
dent measurements were used for each angle-of-arrival estimate. The plots
show the dependence of the CRLB for horizontal bearings on source range
(propagation distance) and frequency.

The general appearance of the CRLB plots, for all of the models, is similar.
Near the source and at low frequency, the CRLB is independent of range.
This independence is because the main determinant of array performance
near the source is the environmental noise. As the frequency and range are
increased, however, the CRLB contours turn upward dramatically. Within
this region, distortion of the wavefronts by turbulence begins to be the most
significant determinant of array performance.

The Kolmogorov model (fig. 23) predicts higher values for the CRLB than
the other models, particularly at lower frequencies and longer ranges. The
reason is that the Kolmogorov model predicts too much energy at the large
scales, which are most important in determining the array performance.
Therefore the Kolmogorov model should be avoided in this application.
CRLB predictions for the isotropic von Kármán model (fig. 24) agree rea-
sonably well with calculations from the more complicated, anisotropic mod-
els (figs. 25 to 30). Its predictions fall midway between the along-wind
and crosswind predictions of the Kristensen et al (figs. 26 to 27) and Mann
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Figure 23. CRLB calculations for Kolmogorov inertial-subrange model.
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Figure 24. CRLB calculations for isotropic von Kármán model.
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Figure 25. CRLB calculations for anisotropic bottom-up von Kármán model, for propaga-
tion in along-wind direction.
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Figure 26. CRLB calculations for Kristensen et al model, for propagation in along-wind
direction.
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Figure 27. CRLB calculations for Kristensen et al model, for horizontal propagation in
crosswind direction.
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Figure 28. CRLB calculations for bottom-up anisotropic Gaussian model, for propagation in
along-wind directions.
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Figure 29. CRLB calculations for Mann model, for propagation in along-wind direction.
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Figure 30. CRLB calculations for Mann model, for horizontal propagation in crosswind
direction.

(figs. 29 to 30) models. Predictions from the bottom-up von Kármán model,
in the along-wind direction (fig. 25), are close to the corresponding predic-
tions for the Kristensen et al (fig. 26) and Mann (fig. 29) models. The bottom-
up Gaussian model, in the along-wind direction (fig. 28), also agrees well
with the corresponding predictions from the Kristensen et al and Mann
models, although the contours start to diverge for high frequencies and
long propagation distances. This may be due to the inability of the Gaus-
sian model to realistically capture small-scale turbulence structure.

The Kristensen et al and Mann models are probably the most realistic, and
agree in most regards. Interestingly, the anisotropic effect predicted by the
Mann model is more pronounced than the effect predicted by the Kris-
tensen et al model. In the along-wind direction, the Mann model (fig. 29)
predicts higher CRLB than the Kristensen et al model (fig. 26); in the cross-
wind direction, it predicts lower CRLB (figs. 27 and 30).

On the basis of the CRLB calculations, we are led to the following conclusions:

1. The Kolmogorov model does not work very well for low-frequency
acoustics and should therefore be avoided.

2. The isotropic von Kármán model is a convenient and reasonably ac-
curate model for rough calculations.
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3. The anisotropic versions of the von Kármán and Gaussian models
have little practical value. If one is willing to go through the effort
of using an anisotropic von Kármán or Gaussian model, it would be
worthwhile to take the small additional step to the Kristensen et al
model, or even consider using the Mann model.
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10. Concluding Remarks

The assumption of isotropic turbulence is a common one and a reason-
able starting point for creating statistical turbulence models. Previous re-
searchers have used this assumption to derive equations for the second-
order statistics needed in wave propagation calculations. By starting with
a Gaussian-type equation for the correlation function, for example, or with
a von Kármán-type equation for the energy spectrum, one can use well-
known relationships for isotropic homogeneous turbulence to derive any
other second-order statistics of interest.

The main motivation for selecting the isotropic Gaussian and von Kármán
models (as opposed to Kolmogorov’s inertial-subrange model) is that they
are well-behaved for the large-scale, energy subrange turbulence. This
large-scale turbulence is important in low-frequency acoustics. Although
the isotropic Gaussian and von Kármán models are more satisfactory for
large-scale turbulence than the Kolmogorov model, they are still unrealistic
in one critical aspect: they neglect anisotropy of the large-scale turbulence.

My main intention in this report was to remedy this problem, by show-
ing how anisotropic versions of the Gaussian and von Kármán models
can be built. This task proved surprisingly difficult. Even though a sim-
ple, idealized form of anisotropy was assumed (eq (23)), the mathematical
development of the models quickly became complex. Difficulties in deriv-
ing closed-form equations for statistical quantities of interest, such as the
2D correlation functions, made numerical integrations necessary.

The inherent complexity of even “simple” anisotropic models with obvious
shortcomings (such as those developed based on eq (23)) makes their direct
application unappealing. In practice it is probably not much more difficult
to use the first-principle model developed by Mann (1994).

This report has featured extensive comparisons between different statistical
turbulence models, with and without anisotropy. Although such compar-
isons are a helpful first step toward understanding the effects of anisotropic
turbulence on acoustic propagation, in the end experiments are needed to
test how well the various anisotropic models actually work for predicting
acoustic propagation characteristics. Such experiments are left for future
research.
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Appendix A. Some Useful Integrals

Several solutions to integrals that were used in the body of this report are
provided in this appendix, along with citations of their sources.

1. From Beyer (1981), definite integral equation (615),∫ ∞
0

xn−1 dx

(1 + x2)ν
=

Γ (n/2) Γ (ν − n/2)
2Γ (ν)

=
1
2
B (n/2, ν − n/2) . (A-1)

By changing the variable of integration from x to y = cx/a in the
above equation and setting n = 2m + 2, one arrives at the useful
equation∫ ∞

0

y2m+1 dy

(c+ ay2)ν
=

Γ (m+ 1) Γ (ν −m− 1)
2Γ (ν) am+1cν−m−1

=
1

2am+1cν−m−1
B (m+ 1, ν −m− 1) . (A-2)

2. From Gradshteyn and Ryzhik (1994), equation (6.565.4),∫ ∞
0

xν+1

(a2 + x2)µ+1Jν (bx) dx =
aν−µbµ

2µΓ (µ+ 1)
Kν−µ (ab) . (A-3)

3. From Gradshteyn and Ryzhik, equation (3.194.1),∫ s

0

tν+ε−3

(t/`2 + 1)ν
dt =

sν+ε−2

ν + ε− 2 2F1

(
ν, ν + ε− 2; ν + ε− 1;− s

`2

)
, (A-4)

where 2F1 is the hypergeometric function. Actually, the integral can
be rewritten in terms of an incomplete beta function rather than
the hypergeometric function. This is convenient, since many soft-
ware packages such as Matlab have routines for calculating incom-
plete beta functions, but not hypergeometric functions. It should be
pointed out that these routines usually require that the argument to
the incomplete beta function is in the range [0, 1]; hence we must try
to recast our result in a form satisfying this requirement. Let us begin
by substituting u = t/`2 into the right-hand side of equation (A-4).
We find

∫ s

0

tν+ε−3

(t/`2 + 1)ν
dt = `2(ν+ε−2)

∫ s/`2

0

uν+ε−3

(u+ 1)ν
du. (A-5)
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Next we adopt a trick from Kristensen et al (1989) by setting η =
u/ (1 + u), with result∫ s

0

tν+ε−3

(t/`2 + 1)ν
dt = `2(ν+ε−2)

∫ s/`2/(1+s/`2)

0
ην+ε−3 (1− η)1−ε dη. (A-6)

From the definition of the incomplete beta function (eq (84)), we have∫ s

0

tν+ε−3

(t/`2 + 1)ν
dt = `2(ν+ε−2)Bs/`2/(1+s/`2) (ν + ε− 2, 2− ε) . (A-7)

Furthermore, setting s = k−2, we can write this as∫ k−2

0

tν+ε−3

(t/`2 + 1)ν
dt = `2(ν+ε−2)B1/(1+k2`2) (ν + ε− 2, 2− ε) . (A-8)

Note that for all real values of k, the argument to the beta function,
1/
(
1 + k2`2

)
, is indeed in the range [0, 1].

4. From Gradshteyn and Ryzhik, equation (3.381.3),∫ ∞
u

xν−1e−µxdx = µ−νΓ (ν, µu) ,

where Γ (x, y) is the incomplete gamma function. When we substi-
tute, t = 1/x, and s = 1/u, the integral becomes∫ s

0
t−ν−1e−µ/tdt = µ−νΓ

(
ν,
µ

s

)
. (A-9)

5. In order to calculate the 2D correlation function for the bottom-up
von Kármán model, one must solve integrals of the form

I =
∫ ∞

0

(
k2`2

)−q
B1/(1+k2`2) (a, b)J0 (kr) k dk. (A-10)

It happens that these integrals can be determined in terms of Mei-
jer’sG-functions. We begin by writing the incomplete beta function as
a hypergeometric function using equation (6.6.8) from Abramowitz
and Stegun (1965):

B1/(1+k2`2) (a, b) = a−1
(

1
1 + k2`2

)a
F

(
a, 1− b; a+ 1;

1
1 + k2`2

)
.
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Next, we transform the hypergeometric function using equation
(15.3.4) from Abramowitz and Stegun:

B1/(1+k2`2) (a, b) = a−1
(
k2`2

)−a
F

(
a, a+ b; a+ 1;− 1

k2`2

)
.

The hypergeometric function can now be recast as a Meijer’s G-
function, using equations (9.34.7) and (9.31.2) from Gradshteyn and
Ryzhik (1994). The result is

B1/(1+k2`2) (a, b) =
(
k2`2

)−a−1

Γ (a+ b)
G21

22

k2`2

∣∣∣∣∣∣ 2, a+ 2

a+ 1, a+ b+ 1

 . (A-11)

We can now substitute equation (A-11) into (A-10) and solve the in-
tegral using equation (7.822.1) from Gradshteyn and Ryzhik (1994).
The result is

I =
1

2`2Γ (a+ b)

(
r

2`

)2q+2a

G22
42

4`2

r2

∣∣∣∣∣∣ a+ q + 1, 2, a+ 2, a+ q + 1

a+ 1, a+ b+ 1

 . (A-12)
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